1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
| import torch import torch.nn.functional as F import math
class KANLinear(torch.nn.Module): def __init__( self, in_features, out_features, grid_size=5, spline_order=3, scale_noise=0.1, scale_base=1.0, scale_spline=1.0, enable_standalone_scale_spline=True, base_activation=torch.nn.SiLU, grid_eps=0.02, grid_range=[-1, 1], ): super(KANLinear, self).__init__() self.in_features = in_features self.out_features = out_features self.grid_size = grid_size self.spline_order = spline_order
h = (grid_range[1] - grid_range[0]) / grid_size grid = ( ( torch.arange(-spline_order, grid_size + spline_order + 1) * h + grid_range[0] ) .expand(in_features, -1) .contiguous() ) self.register_buffer("grid", grid)
self.base_weight = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.spline_weight = torch.nn.Parameter( torch.Tensor(out_features, in_features, grid_size + spline_order) ) if enable_standalone_scale_spline: self.spline_scaler = torch.nn.Parameter( torch.Tensor(out_features, in_features) )
self.scale_noise = scale_noise self.scale_base = scale_base self.scale_spline = scale_spline self.enable_standalone_scale_spline = enable_standalone_scale_spline self.base_activation = base_activation() self.grid_eps = grid_eps
self.reset_parameters()
def reset_parameters(self): torch.nn.init.kaiming_uniform_(self.base_weight, a=math.sqrt(5) * self.scale_base) with torch.no_grad(): noise = ( ( torch.rand(self.grid_size + 1, self.in_features, self.out_features) - 1 / 2 ) * self.scale_noise / self.grid_size ) self.spline_weight.data.copy_( (self.scale_spline if not self.enable_standalone_scale_spline else 1.0) * self.curve2coeff( self.grid.T[self.spline_order : -self.spline_order], noise, ) ) if self.enable_standalone_scale_spline: torch.nn.init.kaiming_uniform_(self.spline_scaler, a=math.sqrt(5) * self.scale_spline)
def b_splines(self, x: torch.Tensor): """ Compute the B-spline bases for the given input tensor.
Args: x (torch.Tensor): Input tensor of shape (batch_size, in_features).
Returns: torch.Tensor: B-spline bases tensor of shape (batch_size, in_features, grid_size + spline_order). """ assert x.dim() == 2 and x.size(1) == self.in_features
grid: torch.Tensor = ( self.grid ) x = x.unsqueeze(-1) bases = ((x >= grid[:, :-1]) & (x < grid[:, 1:])).to(x.dtype) for k in range(1, self.spline_order + 1): bases = ( (x - grid[:, : -(k + 1)]) / (grid[:, k:-1] - grid[:, : -(k + 1)]) * bases[:, :, :-1] ) + ( (grid[:, k + 1 :] - x) / (grid[:, k + 1 :] - grid[:, 1:(-k)]) * bases[:, :, 1:] )
assert bases.size() == ( x.size(0), self.in_features, self.grid_size + self.spline_order, ) return bases.contiguous()
def curve2coeff(self, x: torch.Tensor, y: torch.Tensor): """ Compute the coefficients of the curve that interpolates the given points.
Args: x (torch.Tensor): Input tensor of shape (batch_size, in_features). y (torch.Tensor): Output tensor of shape (batch_size, in_features, out_features).
Returns: torch.Tensor: Coefficients tensor of shape (out_features, in_features, grid_size + spline_order). """ assert x.dim() == 2 and x.size(1) == self.in_features assert y.size() == (x.size(0), self.in_features, self.out_features)
A = self.b_splines(x).transpose( 0, 1 ) B = y.transpose(0, 1) solution = torch.linalg.lstsq( A, B ).solution result = solution.permute( 2, 0, 1 )
assert result.size() == ( self.out_features, self.in_features, self.grid_size + self.spline_order, ) return result.contiguous()
@property def scaled_spline_weight(self): return self.spline_weight * ( self.spline_scaler.unsqueeze(-1) if self.enable_standalone_scale_spline else 1.0 )
def forward(self, x: torch.Tensor): assert x.size(-1) == self.in_features original_shape = x.shape x = x.reshape(-1, self.in_features)
base_output = F.linear(self.base_activation(x), self.base_weight) spline_output = F.linear( self.b_splines(x).view(x.size(0), -1), self.scaled_spline_weight.view(self.out_features, -1), ) output = base_output + spline_output output = output.reshape(*original_shape[:-1], self.out_features) return output
@torch.no_grad() def update_grid(self, x: torch.Tensor, margin=0.01): assert x.dim() == 2 and x.size(1) == self.in_features batch = x.size(0)
splines = self.b_splines(x) splines = splines.permute(1, 0, 2) orig_coeff = self.scaled_spline_weight orig_coeff = orig_coeff.permute(1, 2, 0) unreduced_spline_output = torch.bmm(splines, orig_coeff) unreduced_spline_output = unreduced_spline_output.permute( 1, 0, 2 )
x_sorted = torch.sort(x, dim=0)[0] grid_adaptive = x_sorted[ torch.linspace( 0, batch - 1, self.grid_size + 1, dtype=torch.int64, device=x.device ) ]
uniform_step = (x_sorted[-1] - x_sorted[0] + 2 * margin) / self.grid_size grid_uniform = ( torch.arange( self.grid_size + 1, dtype=torch.float32, device=x.device ).unsqueeze(1) * uniform_step + x_sorted[0] - margin )
grid = self.grid_eps * grid_uniform + (1 - self.grid_eps) * grid_adaptive grid = torch.concatenate( [ grid[:1] - uniform_step * torch.arange(self.spline_order, 0, -1, device=x.device).unsqueeze(1), grid, grid[-1:] + uniform_step * torch.arange(1, self.spline_order + 1, device=x.device).unsqueeze(1), ], dim=0, )
self.grid.copy_(grid.T) self.spline_weight.data.copy_(self.curve2coeff(x, unreduced_spline_output))
def regularization_loss(self, regularize_activation=1.0, regularize_entropy=1.0): """ Compute the regularization loss.
This is a dumb simulation of the original L1 regularization as stated in the paper, since the original one requires computing absolutes and entropy from the expanded (batch, in_features, out_features) intermediate tensor, which is hidden behind the F.linear function if we want an memory efficient implementation.
The L1 regularization is now computed as mean absolute value of the spline weights. The authors implementation also includes this term in addition to the sample-based regularization. """ l1_fake = self.spline_weight.abs().mean(-1) regularization_loss_activation = l1_fake.sum() p = l1_fake / regularization_loss_activation regularization_loss_entropy = -torch.sum(p * p.log()) return ( regularize_activation * regularization_loss_activation + regularize_entropy * regularization_loss_entropy )
class KAN(torch.nn.Module): def __init__( self, layers_hidden, grid_size=5, spline_order=3, scale_noise=0.1, scale_base=1.0, scale_spline=1.0, base_activation=torch.nn.SiLU, grid_eps=0.02, grid_range=[-1, 1], ): super(KAN, self).__init__() self.grid_size = grid_size self.spline_order = spline_order
self.layers = torch.nn.ModuleList() for in_features, out_features in zip(layers_hidden, layers_hidden[1:]): self.layers.append( KANLinear( in_features, out_features, grid_size=grid_size, spline_order=spline_order, scale_noise=scale_noise, scale_base=scale_base, scale_spline=scale_spline, base_activation=base_activation, grid_eps=grid_eps, grid_range=grid_range, ) )
def forward(self, x: torch.Tensor, update_grid=False): for layer in self.layers: if update_grid: layer.update_grid(x) x = layer(x) return x
def regularization_loss(self, regularize_activation=1.0, regularize_entropy=1.0): return sum( layer.regularization_loss(regularize_activation, regularize_entropy) for layer in self.layers )
|